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Self-similar compression regimes of a finite plasma mass are considered with 
allowance for intensive ~adiation loss. 

Researchers have long been interested in formulating the problem of compression of 
a finite plasma mass [1-3]. It is of interest to consider a similar problem for the com- 
pression of an intensively radiating gas, heated to high temperatures, e.g., when high- 
velocity plasma bunches collide. Such high-velocity bunches can be produced by the action 
of laser pulses or electron beams on a foil or by electrodynamic acceleration in explosive 
or magnetoplasma compressors. As they fly apart the density of the bunches gradually de- 
creases and may be rather low by the time of collision. In this case only part of the 
emitted radiation is absorbed while the energy loss of a unit mass per unit time from the 
collision region is quasivolumetric and can be written as Q = 4~oT 4, where K is the effec- 
tive mass coefficient of emission with allowance for self-absorption, corresponding to the 
blackness ~ of the entire plasma bunch and the dimension r 0 at the given temperature [4]. 

Intensive radiation cools the gas and reduces the pressure in it, which will result 
in the formation of a more compact, denser bunch than in the absence of radiation loss. 

A well known way of compressing is by utilizing the pressure of a magnetic field 
generated by some external system or the intrinsic electron current flowing in the plasma 
(in Z-pinch geometry). The compression of a cylindrical column of radiating plasma heated 
by a current has been considered in many studies [5-8]. The current causes the column of 
the compressed plasma to heat up. In the case of "fast" systems, however, because of the 
skin effect only the outermost layers of the plasma are heated while the remainder is ac- 
celerated by magnetic piston action. The effect of the magnetic field can be ignored when 
the pulse in the implosion stage is short. Radiation collapse occurs under comparatively 
long pulses of electric current, when radiating Z pinch undergoes quasisteady compression 
[9, i0]. It is of interest to consider the problem of an essentially transient dynamic 
radiation collapse. 

Another way of compressing a plasma is by means of ablation of its outer layers as 
a result of laser radiation or a beam of fast particles. "Burning" under the effect of 
the laser pulse or particle beams and flying outwards, the plasma acts as a piston, com- 
pressing the "core." If the elements of the sheath have a low atomic number, the sheath 
itself radiates only weakly. If the gas being compressed consists of heavy elements and 
is preheated in some way and the temperature of the plasma ~'core" is high, it will emit 
rather hard radiation that freely passes through the sheath. If the laser pulse is short 
relative to the compression and radiation time of the "core," its role is reduced to merely 
"imparting" the initial velocities. The density of the "core" can be expected to increase 
considerably when the radiation is intensive. Without specifying how the plasma is com- 
pressed and how it is preheated, we can consider the problem of it being compressed when 
it is given initial, inwardly directed velocities. 

We write the energy equation with allowance for the volumetric or quasivolumetric radia- 
tion loss: 

Oe 3v 
O----~+p O---[-=--Q(e, v). (1) 

Suppose that the loss rate Q has a power-law dependence on the thermodynamic parameters: 
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Q = Q, ( e / e , ) - r  - ~  ~ (re~m,). 

The introduction of the function ~(m/m,) makes it possible to consider the existence of 
many layers with different optical properties. For example, ~ = 0 for a nonradiating 
sheath of light elements while we can set ~ = 1 for the "core." The equation of state 
can be written as 

(2)  

e = p v / ( y -  1). (3 )  

For  aluminum in  t h e  t e m p e r a t u r e  r a n g e  T = 10"120 eV we can assume t h a t  ~ ~ T-av  - 2 / s  [ 4 ] ,  

e ~ T 3 /2 ,  whereby  ~ = - 2 / 3 ,  ~ = 2 / 3 .  I n  t h i s  r a n g e  u = 1, 2. The q u a n t i t i e s  e , ,  v , ,  and 

m, are some characteristic values. 

Let us consider one-dimensional (planar, cylindrical, spherical, v = i, 2, 3) gas 
motions. System (1)-(3) is supplemented by the equations of motion and continuity 

Ot~ _}_ r~_l Op - -  O, Or 1 Or v 
a-7-~ am at - t t '  ~ am = v .  (4) 

Sys tem ( 1 ) - ( 4 )  can be r e d u c e d  t o  d i m e n s i o n l e s s  form by t h e  t r a n s f o r m a t i o n  

u = u , t t ' ,  v = v , v ' ,  e = e,e' ,  

t = t , t ' ,  p = p , p ' ,  m = m , m ' ,  r = r , r '  (5)  

( t h e  p r imes  h e r e  d e n o t e  d i m e n s i o n l e s s  q u a n t i t i e s ) .  

Only  t h r e e  o f  t h e  d i m e n s i o n a l  q u a n t i t i e s  a r e  i n d e p e n d e n t .  When m, ( t h e  t o t a l  gas  m a s s ) ,  
u* (the characteristic initial gas velocity), and v, (characteristic initial specific volume) 
are chosen to be the independent quantities the other dimensional quantities are determined 
from the relations 

e ,  = u~,  r ,  r e , v , ,  t ,  r , l u , ,  p ,  = u ; I v , .  (6)  

We s h o u l d  p o i n t  o u t  t h a t  e ,  i s  t h e  c h a r a c t e r i s t i c  i n t e r n a l - e n e r g y  v a l u e  t h a t  would 
have been attained if the entire kinetic energy were transformed into thermal energy in 
the absence of radiation; r, is the characteristic initial dimension; and t, is the charac- 
teristic compression time without allowance for the retarding effect of the gas motion. 

All of the equations, except the energy equation, are invariant under transformation (5). 
When the primes of the dimensionless variables are omitted, the energy equation can be writ- 

ten as 

Oe Ov 
Ot + p Ot - -  ~e-= v-~q)" (7)  

The dimensionless parameter T is determined by the relation 

Q , t ,  Q , t ,  
. . . . .  ( 8 )  e, u~ 

It represents the ratio of the characteristic time tg of gasdynamic motion to the de-excita- 
tion (radiation) time t r = e,/Q,. Let us consider a specific example. Suppose that alumi~ 
num-plasma bunches of dimension r 0 = 0.3 mm and density p ~ 3.10 -3 g/cm s are compressed. At 
a temperature T ~ 120 eV the blackness is q ~ 2"10 -3 [4]. At an anergy e ~ 104 kJ/g the radi- 
ation time is t r ~ 6 nsec. When the velocity is u = 1.4"107 cm/sec the characteristic gas- 
dynamic time is tg ~ 2 nsec, i.e., �9 ~ 0.3. The radiation loss will substantially affect the 
gas dynamic motion. 

In the general case system (3), (4), (7) must be solved numerically. Shock waves, 
which can arise inside the compressing and radiating volume, propagate toward and away from 
the center and heat up the gas. There may be situations, however, when the gas is preheated 
by auxiliary laser beams, current pulses, and so forth. Then shock and acoustic waves 
rapidly propagate in the plasma, causing a weakly varying parameter profile to be estab- 
lished. Let us consider the limiting shockfree regimes of compression and radiation by 
a preheated plasma. For simplicity we confine the discussionto compression of a plasma 
with homogeneous properties, i.e., we set ~ ~ i. 

We assume that motion with radiation loss occurs in a so-called regular regime and we 
look for the solution of the system in separable variables [11-15]: 

1490 



r = R (m) r ~ (t), p = P (m) p0 (t), 

v = V (m) v ~ (t), u = U (m) u ~ (t). 

Upon s u b s t i t u t i n g  ( 9 )  i n t o  Eq .  ( 7 )  a n d  t h e  e q u a t i o n s  o f  m o t i o n ,  we o b t a i n  t w o  s y s t e m s  o f  
ordinary differential equations, one of which is used to find the time dependence of the: 

parameters, 

( 9 )  

de___~ ~ _{_ pO duo _ ~Ce (e~ - ~  (v~ -~ ,  1 dr--~ - -  C~, 
dt dt u ~ dt 

pOuO 
du__J_ ~ = C ~ p 0 ( r 0 ) ~ - ~ ,  vo = Co(roF,  e o _ _ _  , (io) 
dt y - -  1 

and the other is used to determine the mass distribution of the parameters, 

( P V ) - ( ~ + l ) V  - ~  = Ce, U = C~R, R V - l d R  = C~Vdm, - - R V - l d P  = CuUdm. ( 1 1 )  

The symbols C i in Eqs. (i0) and (ii) are separating constants. By a method similar to that 
in [15] we can show that only one combination of these constants has the connotation of 
a scale factor and it can be introduced into the definition of the scale of the quantity. 
With the choice C u = C r = C v = C e = 1 the first of Eqs. (ii) is reduced to the form pV$ = 

I, where g = $/(~ + i) + i. This system of equations is solved with the following boundary 
conditions: 

m = 0, U(0) = 0, and R(0) = 0 at the inner boundary by virtue of the symmetry; 

m = 1 and P(1) = 0 at the inner boundary for compression with a preassigned velocity. 

The solution of system (ii) is in fact analogous to that given in [11-13] for the prob- 
lem of plasma spread with heating. It is completely solved analytically for v = 2 but must 
be solved numerically for other cases. 

Let us analyze the time dependence of the parameters, omitting the subscript 0. The 
corresponding system has the form 

_ _  dv dr du = rV" de -[- p - ze - ~  v - g ,  - -  u, _ pr  v - l ,  v ( 1 2 )  
dt dt dt dt 

For special initial and boundary conditions a solution as a power function of time exists 
in the form (tf - t) s, where tf is the time of compression to infinite density. 

r = A ( t j - - t )  s, u = - - A s ( t ~ - - t )  s - ' ,  v = A ' ( t ~ - - t )  sv, 

e = B (tf - -  t) k, p = (? - -  1) B (tj  - -  t)k-VS/AV. ( 1 3 )  

Two relations for the exponents result when Eq. (13) is substituted into Eq. (12): 

= 2s - -  2, s = (a + 2~)/~2 (1 + ~) + ~ ) .  ( 1 4 )  

For chosen ~ and ~ at each value of v such a solution can exist only at one particular value 
of s. Moreover, two equations are obtained for the amplitudes: 

Aas (s - -  1) = (y - -  1) B, B (k q- vs (~ - -  1)) = , B - " A  -v~.  ( 1 5 )  

From (15) we get two constraints for the exponent s: 

s > 2 / ( 2 + v ( y - -  1)), s > l .  ( 1 6 )  

The first inequality of (16) indicates that compression with radiation losses should occur 
more rapidly than adiabatic compression since s, = 2/(2 + v(u - i)) corresponds to adiabatic 
compression [2]. The second requires retardation as the compression proceeds. At a given 
choice of ~ and ~ these conditions are satisfied only for v = i. 

For the problem of "falling-in" (collapse) under consideration here we can take u(t0) = 
u 0 = -i. Without loss of generality we can find t o = 0. Moreover, with the requirement 
that tf = 1 we obtain 

1491 



~5 

2 

2 

/O e 

70 

f 

,. ~ ~ ~ , = ~ _ . . , , .  , 

b '0,75 T~ 

'1 

" 0 ~ "  

P 
# 3,751~ L% c 

~ ' 1  ~ 1 : \ 

vS )Iv 
d 

0,5 3 + 

Fig. i. Radius r(a), density 0(b), pressure p(c) and internal energy 
e(d) vs. time at different values of ~ in the planar case (~ = I). 

A 1 B ~ -  1 1 BI+~A,~  - , - - -  , ~ =  ( k  + ~ s ( ? - -  1 ) ) .  ( 1 7 )  
s s - - 1  s 

A power solution at u 0 = -i, tf = I is possible only for a single value �9 = T,. With the 

specific choice of parameters ~ = -2/3, ~ = 2/3 for ~ = i the quantities vary as follows 
as the collapse time tf is approached: u ~ (tf - t) I/4 + 0, i.e., the plasma is slowed 

down and cools since e ~ (tf - t) I/2 + 0. The density increases more rapidly than does 

the pressure: 

p ~ (tj--t)-a/4.-+oo, v N(tt--t)5/~--+O. 

The results of numerical calculations of system (12) for the planar case (~ = i) at 

different values of the parameter T are given in Fig. i. The graphs of the radius r, den- 
sity p = i/v, pressure p, and internal energy e as functions of time are shown in Fig. la, 
b, c, and d, respectively. The values of the parameter �9 are given next to the respective 

curves. The initial values of the radius, velocity, and internal energy r 0 = 0.8, u 0 = 

-i, and e 0 = i satisfy the exact solution at s = 1.25 and T, = 0.643, v = i. As already 
mentioned, �9 characterizes the ratio of the time of gasdynamic motion to the characteristic 

radiation time t r. The value T = ~, separates two regimes. At T < ~, the compression con- 

tinues to a time t > tf (Fig. la) the density increases from 1.25 to 0 ~ i0-i00 (Fig. ib). 
The gas is then stopped completely (u = 0), the pressure reaches its maximum value (Fig. 

ic). Compression is replaced by spreading after that. 

At ~ = 0, i.e., in the absence of radiation loss, the internal energy e at first in- 
creases upon retardation and then decreases because of spreading (Fig. id). At �9 ~ 0 the 
radiant energy loss either balances the increase in the internal energy upon compression 
(~ < 0.25) or exceeds it (~ > 0.25). When T increases (at ~ > ~*) as tf is approached the 
gas cools while continuing to move. In this case r + 0 and P + ~ (Fig. la, b, d). When 
r + 0 and e + 0 we can determine which process is faster, the increase in compression or 
energy loss. if p + ~ as the final state is approached, p + ~ at a faster rate than e + 0. 
This is what happens at ~ = 0.75 and i. A further increase in �9 (e.g., at T = 1.5) results 

in a transition to a regime of energy loss due to radiation without retardation, when in 
the final state p + 0. The change in the initial state, a decrease in the initial faction 
of the kinetic energy leads to the fact that compression followed by spreading is immedi- 
ately replaced by a regime with a dominant radiation energy loss. 

Inclusion of radiation in the energy equation, therefore, changes the nature of the 
evolution of the parameters. The radiation loss causes a much higher degree of compression 
to be reached. 
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Radius r (a), density p (b), pressure p (c) and internal en- 
ergy e (d) vs. time at different values of T in the cylindrical case 

( ,  = 2). 

A solution of the form (13) does not exist at ~ = -2/3 and $ = 2/3 for v = 2, 3. Fig- 
ure 2 shows the results of numerical calculation for the cylindrical case. Since p ~ I/r 2 
(and not 1/4 as in the planar case), compression causes a more pronounced increase in the 
internal energy e and the density p and a smaller decrease in the radius at ~ = 0 than in 

the planar case (Fig. 2). 

At �9 = 0.175 the compression is replaced by spreading and at ~ e 0.25 by the regime 
of radiation without retardation. In the final state e § 0, the density p ~ 102-10 ~, and 
the pressure passes through a maximum before maximum compression and then falls off to zero. 

In the case of large values of T we can assume (especially for ~ = 2, 3) that radiation 
occurs at roughly constant specific volume v I and we write the energy equation as 

de 
dt 

Ee -= u~ -~ ~ -- ~le -=, where ~i = TDI-13" 

which means that e1+==e1~ (l ~It(I~-~) e~+= ),i.e., the energy is radiated in a finite time t r = 

e1+~/(l + ~)T I = 3e01/3/~ I. At the final density this causes p + 0. Compression proceeds 

without stop. We can estimate the time tr; e.g., for v = 2 and �9 = 0.5 the radiation time 
is t r ~ 0.3. The increase in the density during compression causes the cooling rate to 
increase. 

In conclusion, we consider some limitations on the formulation of the problem under 
consideration. First, power-law approximations of the type (2) are valid (even roughly) 
only in a limited temperature range. At low temperatures the quantity < and with it the 
quantity Q decrease rapidly. Cooling actually takes place, therefore, not to T = 0 but 
only to some value Tmin, which can be much lower than the initial temperature, and the bulk 
of the cooling process is described in the aforementioned approximation. A more exact des- 
cription can be obtained by using more involved dependences Q(e, p), e.g., of the form Q2(e)" 
Q=(p), where Ql increases, starting from some values of e in accordance with the tabulated 
values of K [4]. The description can be refined further by using tabulated values of Q(e, 
p), but discarding the self-similar formulation. Second, upon compression to high densities, 
especially when the temperature falls at the same time, K can increase so much that the 
approximation of volumetric or quasi-volumetric approximation of de-excitation ceases to 
be valid. In this case we must either go over to a different formulation (e.g., with sur- 
face energy losses) or solve the direct radiation-gasdynamic problem with the complete radia- 
tion transport equation. 
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NOTATION 

Here, T denotes the temperature; o is the Stefan-Boltzmann constant; D is the black- 
ness coefficient; K is the effective mass coefficient of emission; p is the density; ~ is 
the effective adiabatic exponent; Q is the rate of radiative energy loss per unit mass; 
Q, is the dimensional coefficient in the energy-loss law; ~ and ~ are exponents in the 
energy-loss law; u, m, r, v, p. e, and t are the velocity, mass and Eulerian coordinates, 
specific volume, pressure, internal energy, and time, respectively; * denotes isolated 
time dependences; ' denotes dimensionless variables; ~ is the parameter characterizing the 
chosen geometry; T is a parameter introduced into (8); P, V, U, and R are isolated coordi- 
nate dependences of the pressure, specific voluem, velocity, and the Eulerian coordinate; 
tg and t r are the characteristic gasdynamic and radiation times; t o is the initial time; 
tf is the collapse time; Ce, Cr, Cu, and C v are separating constants; A and B are para- 
meters that appear in the power laws of the time variation of the parameters; and k and s 
are the exponents in those laws. 
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